
74 The Delphi Magazine Issue 71

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

➤ Listing 1: A section of a
project desktop file.

[WatchWindow]
Create=1
Visible=1
State=0
Left=810
Top=226
Width=200
Height=149
MaxLeft=-1
MaxTop=-1
ClientWidth=281
ClientHeight=125
TBDockHeight=149
LRDockWidth=421
Dockable=1

Missing Debugger Windows

QI am having a problem de-
bugging an application in

Delphi. I was originally working at a
resolution of 1024x768, and had my
debugger windows (watches, local
variables and call stack) posi-
tioned on the right-hand side of the
screen. To keep them there for this
project I used a desktop file.

Because of the target machines
for this application I switched
down to a resolution of 800x600 to
continue development a little while
ago. The problem is that I cannot
see my debug windows any more,
as they are now positioned off the
screen! How can I retrieve them
without switching back to
1024x768?

AIf changing screen resolu-
tions is not an option, for

whatever reason, I see three solu-
tions. The first would be to simply
delete your desktop file (which ob-
viously will lose all the information

stored in it). Depending on which
version of Delphi you are using,
this may be either a project desk-
top file or a global desktop file (in-
troduced in Delphi 5).

The project desktop file is a file
stored in the same place as your
project file, with the same name as
it but with a .dsk file extension
(.desk in Kylix). Once the file has
been deleted, the next time you
open the project, all the windows
will be in their default positions
and so will be accessible again.

The global desktop file affects
the layout of all projects and is
stored as a file in the bin directory
with a .dst extension. You can
delete it and the windows will
become accessible next time you
run Delphi.

The next possibility would be to
edit the desktop file (be it a project
or global desktop) and fix the posi-
tions of the missing windows. Both
types of desktop file are just Win-
dows .INI files, with individual sec-
tions for each IDE window. As you
can see from Listing 1, it should be
easy to modify the Left attribute to
bring it back on screen.

Incidentally, even if you have
disabled the option to auto-save a
project desktop file (on the Prefer-
ences page of the environment
options dialog), the IDE may still
have a default desktop file in use if
the option was ever enabled
beforehand. The file is called
delphi.dsk in Delphi 1 and

delphi32.dsk in 32-bit versions of
Delphi, and is found in the bin
directory. Kylix calls the file
delphi.desk and stores it in
~/.borland. This file can be simi-
larly edited or deleted to over-
come issues with the default IDE
window layout.

The final solution to the problem
is more a Windows solution than a
Delphi solution. The first thing to
do is make sure the window that
you wish to retrieve is active, by
selecting it from the Delphi menu
(for example View | Debug Windows
| Watches). Next, you can bring
down the window’s system menu
by pressing Alt+Space. Note that
the debug windows use a bsSize-
ToolWin border style, so they don’t
have the usual icon on the left of
the caption that is used to drop
down the system menu, but the
keyboard shortcut still works.

From the system menu (which
will probably be displayed on the
screen, even though the underly-
ing window is still off-screen),
choose the Moveoption, but choose
it with the keyboard by pressing M.
This now allows the cursor keys to
move the window to a new destina-
tion. Hold down the left cursor key
and the window should soon make
its way onto the desktop. Press
Enter to exit this moving mode and
make the window keep its new
position.

SDF Files

QI need to access a text file in
SDF format. I looked for this

format on the web without signifi-
cant results. How can I read
SDF files from within a Delphi
application?

AFortunately this is quite
straightforward as the

TStrings class has a property
dedicated to SDF (System Data

procedure TForm1.Button1Click(Sender: TObject);
var
S: String;

begin
with TFileStream.Create('MyFile.sdf', fmOpenRead or fmShareDenyWrite) do
try
SetLength(S, Size);
Read(S[1], Size);
ListBox1.Items.CommaText := S

finally
Free

end
end;

➤ Listing 2: Reading an SDF file.

July 2001 The Delphi Magazine 75

Format). Assuming you have an
SDF string read from a file, you can
simply assign it to any TStrings ob-
ject’s CommaText property, and it
will be interpreted accordingly.
For example, supposing you have
an SDF file called MyFile.sdf. You
could read the file into a listbox,
translating into the actual data
rather than the file contents using
something like Listing 2.

RTTI To The Rescue

QTo make changing our user
interfaces easier (for inter-

national customers), we have de-
cided to go with a principle of
numeric Caption properties. When
a form is loaded, we iterate the
form’s components. If the compo-
nent has a Caption property which
can be converted to an integer,
then we attempt to load a resource
string with an identifier equal to
that integer.

Is there any way we can deter-
mine whether a VCL object derived
from TControl has an accessible
Caption property? The best solu-
tion we’ve found so far is to use
RTTI (via the is operator), but of
course that means we have to
hardcode the appropriate types
(TLabel, TButton etc.) into the rou-
tines. Introducing a new compo-
nent with an accessible Caption
property onto a form would mean
having to change the TCustomForm
class that implements the resource
loading; not exactly an elegant
solution!

ARTTI does answer your
question, but not by using

the is operator. As you say, is
allows you to find if a component
has a Caption property, but you
then typically need to typecast to
the right type to assign to the
Caption property.

Relying on a common ancestor
to avoid the typecast does not
work, for two reasons. Firstly,
TControl (which does define the
Caption property common to all
visual components) defines Cap-
tion as protected, so it is not
directly accessible: descendants
will publish it as required. Sec-
ondly, some components intro-
duce Caption as a new property
and some components inherit it
from TControl. For example,
TMenuItem defines its own Caption
but TButton inherits it from
TControl and publishes it.

Instead, I would recommend the
RTTI support unit, Typinfo. A
simple example should show what
can be achieved. Listing 3 shows
some code that works in Delphi 5
and later. It loops through each
component on the form using RTTI

to read the value of the Caption
string property, if it exists as a pub-
lished property. Once a caption
has been read, it is translated into
an integer if possible. If the string
does represent an integer (mean-
ing StrToIntDef didn’t return its
specified default value), some
information is added to a listbox to
describe the results.

The questioner can replace the
statement that adds the string to
the listbox with code that reads a
resource string and assigns it to
the component’s caption using
SetStrProp.

IsPublishedProp and the version
of GetStrProp that can take an
object instance as a parameter
were added in Delphi 5. For earlier
versions, use the code in Listing 4,
which uses property information
records (pointed to by PPropInfo
pointers). Both sections of code
can be found in the RTTIEg.dpr
project on this month’s disk.

Type Libraries
And COM Parameters

QI am faced with the task of
writing a simple IDE for our

in-house language. So far I have
written a framework that can han-
dle streams and register plug-ins.
The framework can handle COM
plug-ins, which operate on a
stream. Since I can easily copy
from one stream to another the so-
lution seemed quite straightfor-
ward: I should use OLE streams.
The help states that those are used
by OLE to read and write data.

uses
Typinfo;

procedure TForm1.Button1Click(Sender: TObject);
const
PropName = 'Caption';
Default = -1;

var
Loop, CaptionVal: Integer;
Comp: TComponent;

begin
for Loop := 0 to ComponentCount - 1 do begin
Comp := Components[Loop];
if IsPublishedProp(Comp, PropName) then begin
CaptionVal := StrToIntDef(GetStrProp(Comp, PropName), Default);
if CaptionVal <> Default then
ListBox1.Items.Add(Format(
'The %s component %s has a numeric caption: %d',
[Comp.ClassName, Comp.Name, CaptionVal]))

end
end

end;

➤ Listing 3: Simplifying common
property access.

procedure TForm1.Button1Click(Sender: TObject);
const
PropName = 'Caption';
Default = -1;

var
Loop, CaptionVal: Integer;
Comp: TComponent;
PropInfo: PPropInfo;

begin
for Loop := 0 to ComponentCount - 1 do begin
Comp := Components[Loop];
PropInfo := GetPropInfo(Comp.ClassInfo, PropName);
if Assigned(PropInfo) then begin
CaptionVal := StrToIntDef(GetStrProp(Comp, PropInfo), Default);
if CaptionVal <> Default then
ListBox1.Items.Add(Format(
'The %s component %s has a numeric caption: %d',
[Comp.ClassName, Comp.Name, CaptionVal]))

end
end

end;

➤ Listing 4: Backwards
compatible version of
Listing 3.

76 The Delphi Magazine Issue 71

The problem appears when I use
the Type Library Editor. I want to
declare a method in my interface
called Execute that takes and
returns a stream but OLEStream
doesn’t appear in the list of valid
parameter types. Is there any way
to send and receive streams over a
COM interface? Writing my own
marshaling code is beyond me.

AWhen a COM method is
intended to take a reference

to some interface that is not acces-
sible, the most common way of
proceeding is to declare the pa-
rameter as type IUnknown, but
document that it takes an IStream
(the interface type for an OLE
stream). The method can query
the interface for IStream when it
comes in (using either QueryInt-
erface or the as operator) and
return an error value if IStream is
not supported.

Other options could include
trying to track down whether there
is a standard type library that
defines the IStream interface. If
there is, you should make your
type library use that type library
(the Uses page of the Type Library
Editor, when the root node in the
Object pane is selected). You will
then be able to refer to types from
the other type library meaning you
can define your parameter as
IStream.

Hiding From The Windows
95/98/Me Task Manager

QI’ve a problem I’ve been
trying to find a solution for,

but with no results so far. How do I
stop Windows Task Manager from
showing my program (and there-
fore allowing it to be closed by the
user)?

AThe answer to this question
is to make your application

look like the Windows 95/98/Me
version of a service. On Windows
NT/2000, service applications do
not show up in the Task Manager’s
Applications tab (which is much
the same as the Windows 9x Task
Manager dialog). However, service
applications are specific to the
Windows NT/2000 architecture.

To cater for this requirement, an
API exists in Windows 9x/Me called
RegisterServiceProcess, which is
implemented in Kernel32.dll. This
can be called to turn your own
application (or any other one, for
that matter) into a simple service
application. There are two implica-
tions of this. Firstly, the name of
the process will not appear in the
Task Manager. Secondly, the appli-
cation has the capability of surviv-
ing a user logoff. Normally, when a
user logs off, all programs are
closed. However, an application
can tell the difference between a
system shutdown and a user logoff.
Simple service applications can
avoid closing down if the user is
logging off, and they will be left
running by Windows.

RegisterServiceProcessdoes not
exist in Windows NT/2000, so
Microsoft advice from the Platform
SDK is: ‘To call RegisterService-
Process, retrieve a function pointer
using GetProcAddress on

KERNEL32.DLL. Use the function
pointer to call RegisterService-
Process’. This is wise if your appli-
cation may be launched on either
platform. If, however, you know it
will only be launched on Windows
9x/Me, you can write a normal
import declaration for it.

Before starting with this API, we
need to know how it is declared.
Listing 5 shows the C declaration
in the first comment. The direct
ObjectPascal equivalent is then
shown in the next comment. How-
ever, the documentation states
that the return value is either 1 for
success or 0 for failure. Clearly the
32-bit return value is used as a
Boolean success indicator, so a
more useful translation is at the
end of Listing 5. LongBool is a 32-bit
wide Boolean type whose value is
interpreted using the same
semantics as C does.

When calling the function, the
first parameter identifies the pro-
cess to be turned into a simple ser-
vice. You can pass 0 to identify the
current process. The second
parameter should be 1 to register
the specified process as a simple
service or 0 to unregister it. The
Platform SDK has constants for
these values, but Delphi 5 does not
define them.

With this information, Listing 6
shows how a Windows 9x/Me-
specific application can be hidden
from the Task Manager. However,
because of the import declaration,
trying to run such a program on
Windows NT/2000 would give a
fatal error on startup (since the
specified API does not exist in
Kernel32.dll on Windows NT and
2000).

//This is the C declaration:
//DWORD RegisterServiceProcess(DWORD dwProcessId, DWORD dwType);
//This is a direct translation from C to ObjectPascal
//function RegisterServiceProcess(dwProcessId, dwType: DWord): DWord; stdcall;
//external kernel32;
//This is a more appropriate translation
function RegisterServiceProcess(dwProcessId, dwType: DWord): LongBool; stdcall;
external kernel32;

➤ Listing 5: An API declaration
translated from C to
ObjectPascal.

function RegisterServiceProcess(dwProcessId, dwType: DWord): LongBool; stdcall;
external kernel32;

procedure RegisterMe(Register: Boolean);
const
RSP_SIMPLE_SERVICE = 1;
RSP_UNREGISTER_SERVICE = 0;
Types: array[Boolean] of DWord = (RSP_UNREGISTER_SERVICE, RSP_SIMPLE_SERVICE);

begin
Win32Check(RegisterServiceProcess(0, Types[Register]))

end;
procedure TForm1.FormCreate(Sender: TObject);
begin
RegisterMe(True);

end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
RegisterMe(False)

end;

➤ Listing 6: Hiding from the Windows 9x/Me Task Manager.

78 The Delphi Magazine Issue 71

An alternative implementation
of the RegisterMe routine gets
round that by following the
Microsoft advice, as shown in
Listing 7.

This now works quite nicely, but
doesn’t address the other aspect of
this API. The program should, if
needed, be able to survive the cur-
rent user logging off and any user
then logging on. A Delphi applica-
tion won’t demonstrate this behav-
iour without further changes,
because of the way the VCL
behaves. When Windows is clos-
ing, or the user logs off, Windows
sends a WM_ENDSESSION message to
the application. The VCL picks this
message up and sets Applica-
tion.Terminated to True, which
stops the message loop running
and lets the program quickly shut
down.

We need to trap this message
ourselves and carefully examine
one of the values passed along with
it (the LParam value). If LParam has a

value of ENDSESS-
ION_LOGOFF then the
user is logging off
rather than shutting
the machine down,
and so we should
stop the Application
object doing its normal job of
deciding to shut.

To modify the Application
object’s handling of a message we
can write an application message
hook routine, installed with
Application.HookMainWindow and
uninstalled with Application.
UnhookMainWindow. Application mes-
sage hook routines intercept mes-
sages targeted at the Application
object’s internal window (the top
level window in the application)

and can stop them reaching their
destination.

Listing 8 shows the hook
method along with the code that
installs it and uninstalls it, and
comes from the project
LogOffSurvivor.dpr on the disk.
The key thing is that the hook rou-
tine returns True to stop the mes-
sage being processed by any more
hook routines or the Application
object itself. Figure 1 shows the
program running with the Task
Manager not listing it.

Note that the code in Listing 8
only affects users logging off of
Windows 95/98/Me. The program
will still be terminated when
logging off Windows NT/2000. To
survive a log off on those plat-
forms, you should write a proper
NT service application.

Problems With Packages

QI have written some compo-
nents for my own use and I

have added them to a package so
they can be installed into Delphi.
The problem is that each time I
build a project that uses these
components, all the source files
from the package are also rebuilt. I
was expecting that the files belong-
ing to the package would be linked
in, but not recompiled each time.
How can I set things up so that only
my actual project code is compiled
during a build?

ABefore covering the prob-
lem itself, I think it might be

a good idea to have an overview of
how Delphi packages are sup-
posed to be used both in the IDE
and also in your programs. The
last time I mentioned packages, in

procedure RegisterMe(Register: Boolean);
type
TRegisterServiceProcess = function(dwProcessId, dwType: DWord): LongBool;
stdcall;

const
RegisterServiceProcess: TRegisterServiceProcess = nil;
RSP_SIMPLE_SERVICE = 1;
RSP_UNREGISTER_SERVICE = 0;
Types: array[Boolean] of DWord = (RSP_UNREGISTER_SERVICE, RSP_SIMPLE_SERVICE);

begin
if not Assigned(@RegisterServiceProcess) then
RegisterServiceProcess :=
GetProcAddress(GetModuleHandle(kernel32), 'RegisterServiceProcess');

if Assigned(@RegisterServiceProcess) then
Win32Check(RegisterServiceProcess(0, Types[Register]))

// API won't be found on Windows NT/2000, but that's okay
// else
// raise EWin32Error.Create('RegisterServiceProcess API not located');
end;

➤ Listing 7: A rewrite of Listing 6 that won’t crash out on WinNT/2000.

function TForm1.ApplicationHook(var Message: TMessage): Boolean;
begin
Result := False;
//If this is a user logoff...
if (Message.Msg = WM_ENDSESSION) and

(TWMEndSession(Message).Unused = LParam(ENDSESSION_LOGOFF)) then
begin
//...Stop this message being processed by the
//Application object, which would shut the application
Result := True;
Message.Result := 0;

end
end;
procedure TForm1.FormCreate(Sender: TObject);
begin
RegisterMe(True);
Application.HookMainWindow(ApplicationHook)

end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
Application.UnhookMainWindow(ApplicationHook);
RegisterMe(False)

end;

➤ Listing 8: Making the program survive a user logging off.

➤ Figure 1:
A program
running which
is not in the
Task Manager.

July 2001 The Delphi Magazine 79

the Transfer Efficiency Clinic entry
from Issue 67, I avoided looking at
the general subject, but feel this
time we should lay some
groundwork before we proceed.

Firstly, some definitions. These
come from the Delphi help, but are
equally applicable to C++Builder
and Kylix:

‘A package is a special dynamic
link library used by Delphi applica-
tions, the IDE, or both. Runtime
packages provide functionality
when a user runs an application.
Design-time packages are used to
install components in the IDE and to
create special property editors for
custom components. A single pack-
age can function at both design-time
and runtime, and design-time pack-
ages frequently work by calling
runtime packages. To distinguish
them from other DLLs, package
libraries are stored in files that end
with the .bpl (Borland Package
Library) extension.’

A package is defined in terms of
the units compiled directly into it
and the additional packages it
requires to operate (in other
words, the packages that contain
the units used by units compiled
into the package). Unlike a normal
executable, when the compiler
compiles a package, every line of
code is compiled and linked into
the package: there is no smart link-
ing. This is because the package
might be used by many different
applications which access various
parts of various units contained in
the package. In order for them to
work, absolutely all the code must
be present in the binary package.

The primary reason packages
exist is to allow applications to
compile to much smaller
executables. Code that is common
to many applications (such as
VCL/RTL code) can be housed in
some packages (runtime pack-
ages) which can be used by all
applications. The applications
themselves end up much smaller,
as all the VCL/RTL code is stripped
out of them. Thanks to the nature
of packages, an application devel-
oper can switch between using
them and not using them with one
single project option, making it
very easy to try them out.

When an application developer
compiles their application, they
can disable or enable the use of
runtime packages. When enabled,
they also have control over which
runtime packages are used. If a unit
referenced by a program resides in
a runtime package, but that pack-
age is not in the application’s
runtime packages list, that unit will
be compiled directly into the appli-
cation just as in the case of a tradi-
tional non-packaged application.

However, as described above,
the IDE also uses packages as a
means to have components, prop-
erty editors, component editors
and wizards installed (these are
design-time packages). In general,
professional component suites are
distributed as a runtime package
and a design-time package. The
runtime package contains the units
which implement the components
and any associated support rou-
tines. The design-time package
contains the implementation of
any design-time support, such as
component registration or prop-
erty editors, but relies on the run-
time package for the implementa-
tion of the actual components.

This split means that the running
program uses a package that con-
tains only code that is intended to
be called by the program. It is not
inflated by code that is superfluous
at runtime (the IDE’s design-time
support code).

If you look at some of the pack-
ages supplied by Borland, you can
see the general idea. For example,
vclmid50.bpl is a runtime package
that contains all the MIDAS compo-
nents. This file is installed in the
Windows system directory so it
can be accessed by all applica-
tions. Dclmid50.bpl is the design-
time package, installed in Delphi’s
bin directory, so only Delphi can
locate it. This package contains all
the property editors and compo-
nent registrations for the MIDAS
components. dclmid50.bpl is com-
piled to require vclmid50.bpl, as
that package contains the MIDAS
component implementations.

The IDE loads dclmid50.bpl
when it starts and, because of
the aforementioned built-in
requirement, vclmid50.bpl is

automatically loaded as well. The
IDE therefore has access to the
components and all their associ-
ated design-time paraphernalia.
Applications, on the other hand,
will load vclmid50.bpl, gaining
access to the components and
carrying no design-time stuff with
them.

That said, the IDE’s New Compo-
nent wizard does not try and
encourage this type of split at all. It
manufactures a single unit which
ends up containing the implemen-
tation of a component and also the
code that registers the component
with the IDE so it will appear on the
Component Palette (design-time
specific code). Unless you split the
registration routine into a sepa-
rate unit, you will be forced to
build a package that can work both
at design-time and at runtime. This
is no big problem but, as has been
mentioned, the package will con-
tain a certain amount of pointless
code which will swell its size.

The questioner has apparently
made a package that contains
units generated by the New Com-
ponent wizard. This means that
their package will also function
both at design-time and runtime.
But it appears the questioner only
made the package in order to
install the components into the
IDE. I gather he is making a
standalone application and is per-
plexed by the component units
being compiled repeatedly
whereas the pre-supplied Borland
components never get
recompiled.

To overcome the problem, we
should understand how the stan-
dard components are laid out. In a
standard Delphi installation, one
of the most important subdirec-
tories is Lib, where all the com-
piled units and packages live. If
you browse this directory you will
find many DCU files (compiled
units) and quite a few DCP files
(compiled package files) but no
PAS files (Pascal units). This is the
key to successful linking without
recompilation. The compiler
needs to be told where the com-
piled versions of your files are, and
the source code lives somewhere
else.

80 The Delphi Magazine Issue 71

Borland supplies its source code
in a variety of subdirectories under
the Source directory, notably
Source\VCL and Source\ RTL\Sys.
During recompilation, the Delphi
compiler does not find this source
code since it does not know where
it lives.

On the other hand, the IDE can
locate these source files, and uses
them for Code Browsing. This is
where you hold the Ctrl key down,
move the mouse over an identifier
and click on the resultant
hyperlink that is shown. Alterna-
tively, you can do menu-driven
code browsing by right-clicking an
any identifier and choosing Find
declaration. There is a separate
setting that tells the IDE about the
locations of these source files, but
the compiler does not get told.

To answer the question we need
to know how to set up a custom
package so that the compiled files
and the source are also kept sepa-
rate, so let’s start the ball rolling.
Before doing anything, you should
make some directories somewhere
on your system, one for package
source file, one for your compo-
nent source code and one for the
compiled code. They can be in the
same directory tree, or in com-
pletely separate locations: the
choice is yours. For the rest of this
discussion, I’ll refer to them
as C:\DC\Package, C:\DC\Source
and C:\DC\Lib.

When you create your package
(from the File | New... dialog) you
should save it in C:\DC\Package.
Similarly, when you create compo-
nents, they should also be saved in
C:\DC\Source.

In order to tell the Delphi com-
piler that compiled files should be
placed in a different directory,
press the package editor’s Options
button (note that the package has
its own set of options as distinct
from those of any open project,
which are accessed by Project |
Options...). On the Directories/
Conditionals page of the package’s
options dialog, change Output
directory: to be $(DELPHI)\Pro-
jects\Bpl (that’s where the com-
piled package will be placed), and
change both Unit output direc-
tory: (which is where DCU files go)

and DCP output
directory: to
C:\DC\Lib.

When you press
the package editor’s
Compile button,
C:\DC\Lib will con-
tain compiled ver-
sions of each
component unit, as
well as a DCU for the
package source file. It will also con-
tain a DCP file for the package as a
whole. The final compiled binary
package (the BPL file) will be found
in the BPL sub- directory off
Delphi’s Projects subdirectory.

At this stage, you can press the
package editor’s Install button
and the components in the pack-
age will make their way onto the
Component Palette. The problem
now is how to tell the compiler
about the location of the compiled
component units, and the IDE
about the component source files.
To do this, you go to the environ-
ment options dialog (Tools | Envi-
ronment Options...). On the
Library page of the dialog, there
are two key entries: Library path
and Browsing path. You should add
C:\DC\Lib to Library path and add
C:\DC\Source to Browsing path
(see Figure 2).

You should now be able to use
your newly installed components
and build your application without
having the component units
rebuilt. You should also be able to
use Code Browsing in the editor.
Hold down the Ctrl key and click
on a reference to one of your

component classes (or anything
from one of your component
units). You will be taken to the
appropriate location in the source
file.

Update
In Issue 69 (May 2001) I discussed
the subject of published interface
properties (the RTTI and Interfaces
entry). Shortly after it hit your let-
terboxes I received a message
from Phil Webb who explained
that anyone using Delphi 5 or
earlier can also make use of
published properties that refer to
interfaces. You can define the
property as type TComponent, and
implement the relevant interface
in classes inherited from TComp-
onent. A custom property editor
can be written quite easily to
restrict the number of compo-
nents shown in the Object Inspec-
tor for the property in question to
those that actually do implement
the interface.

This information might be useful
for anyone not immediately
upgrading to Delphi 6 where pub-
lished interface properties are
natively supported, so thanks Phil.

➤ Figure 2:
Telling the IDE
where to find
source files.

	Missing Debugger Windows
	SDF Files
	RTTI To The Rescue
	Type Libraries And COM Parameters
	Hiding From The Windows 95/98/Me Task Manager
	Problems With Packages
	Update

